Konfiguration

From Spirit System Manual
Revision as of 09:25, 19 September 2016 by Spiritdm (Talk | contribs) (Created page with "Normal (Rate) oder spezielle Funktionen: -100% bis 0%")

Jump to: navigation, search
Other languages:
čeština • ‎Deutsch • ‎English • ‎español • ‎français • ‎magyar • ‎italiano • ‎русский • ‎中文(繁體)‎
Die Konfiguration ist der nächste und einer der wichtigsten Schritte zum ordnungsgemäßen Betrieb des Systems.

Die Konfiguration wird mittels einer Software ausgeführt, die Effizienz und Einfachheit kombiniert, während gleichzeitig ein Satz einstellbarer Parameter zur Verfügung steht, einschließlich fortgeschrittener Optionen.

Das Konfigurationsprogramm bietet einen Setup-Assistenten. Wir empfehlen die Verwendung dieses Assistenten, da er die gesamte Konfiguration erleichtert und den Anwender bis zum ersten Flug begleiten wird.


1 ANSCHLUSS AN EINEN COMPUTER

Bevor Sie mit der eigentlichen Konfiguration beginnen, müssen Sie das System mittels einer USB-Schnittstelle an einen Computer anschließen. Je nach Betriebssystem und Computer kann es sein, dass ein Treiber installiert werden muss, nachdem das Kabel an die USB-Schnittstelle angeschlossen wurde.

Das Spirit Konfigurationsprogramm kann auf folgenden Systemen ausgeführt werden:

  • Microsoft Windows
  • Apple OS X
  • GNU/Linux
  • FreeBSD

Nach Anschluss und sobald der Treiber erfolgreich installiert wurde, sollte ein neuer virtueller COM-Anschluss in der Software und dem Gerätemanager sichtbar sein.


MICROSOFT WINDOWS
Installieren Sie den Treiber über den Software-Installer. Dieser Vorgang wird nachfolgend beschrieben.

APPLE MAC OS X
Laden und installieren Sie den Treiber von folgender URL: http://spirit-system.com/dl/driver/SiLabsUSBDriverDisk.dmg

GNU/LINUX a FreeBSD
Es muss nichts installiert werden.

1.1 WIFI-LINK

Die Spirit Einstellungs-Software kann ab sofort mit dem Wifi-Modul verbunden werden. Es wird Spirit Wifi-Link genannt. Wifi-Link kann komplett das USB-Interface ersetzen. Der Benutzer kann alle Einstellungen drahtlos durchführen. Sie können eine Beschreibung der Verbindung mit allen Anweisungen im Wifi-Link Handbuch finden. Download unter Wifi-Link guide.

2 ANSCHLUSS AN DIE EINHEIT

Wenn Sie schon eine USB-Schnittstellenkabel an Ihrem Computer angeschlossen haben, müssen Sie als nächstes das Schnittstellenkabel an die SYS-Schnittstelle des Spirit FBL anschließen. Die Spirit FBL-Einheit kann nicht vom USB Kabel / der SYS-Schnittstelle mit Strom versorgt werden, deshalb ist es erforderlich, sie entweder vom Empfänger, einem BEC oder einer Batterie aus mit Strom zu versorgen. Die RUD und AUX Schnittstellen werden zur Stromversorgung der Spirit FBL- Einheit eingesetzt. Wenn ein BEC oder eine Batterie eingesetzt wird, schlagen wir vor, es an diese Schnittstellen mit einer Spannung von 3V bis 15V anzuschließen. Der mittlere Draht muss die positive Spannungsverbindung sein.

Stecken Sie niemals einen Verbindungsstecker für die Stromversorgung der Einheit in SYS oder ELE/PIT/AIL Schnittstellen!

ACHTUNG
Wenn die Einheit noch nicht konfiguriert ist (z. B. eine neue Einheit) wird empfohlen, noch keinen Servo anzuschließen.


3 KONFIGURATION SOFTWARE INSTALLATION

Die Konfigurationssoftware ist frei erhältlich und steht auf der Website spirit-system.com zum Download bereit. Laden Sie die Software herunter und befolgen Sie die folgenden Schritte je nach Betriebssystem das Sie verwenden spirit-system.com/.

MICROSOFT WINDOWS
Starten Sie den Installer und folgen Sie dem Wizard. Wenn der Treiber noch nicht installiert wurde, erhalten Sie während des Installationsprozesses die Option dazu. Der Installer wird alle notwendigen Schritte ausführen, um Ihren Computer zum Laufen der Konfigurationssoftware vorzubereiten. Nach Beendigung des Installationsprozesses kann die Konfigurationssoftware von Ihrem Desktop oder aus der Programmliste, genannt „Spirit Settings“, gestartet werden.

APPLE MAC OS X
Installieren Sie die heruntergeladene Software durch Öffnung des DMG Ordners. Dann verschieben Sie den Inhalt in Ihren Programmordner. Die Konfigurationssoftware kann vom Programmordner mittels „Spirit Settings“ gestartet werden.

GNU/LINUX a FreeBSD
Extrahieren Sie alle Ordner vom heruntergeladenen Archiv, zum Beispiel Ihrem Home-Verzeichnis. Die Konfigurationssoftware kann aus dem neu hergestellten Verzeichnis mit der Datei „settings.sh“ gestartet werden.


4 KONFIGURATIONSSOFTWARE

Wenn die Software installiert ist, vergewissern Sie sich, dass die Spirit- Einheit mittels USB an mit der SYS Schnittstelle verbunden und initialisiert ist (LED-Lampen sind an), danach starten Sie die Software auf Ihrem Computer.

Starten Sie die Spirit Einstellungen von Ihrem Desktop oder einem Verzeichnis, in dem es installiert wurde.

ACHTUNG
Die Konfigurationssoftware sollte nach der Initialisierung gestartet werden! Wenn das Spirit FBL initialisiert (Status LED ist an) und verbunden ist, können Sie Anpassungen an den Einstellungen vornehmen. Die Konfiguration während eines Fluges ist aus zugehörigen Sicherheitsgründen nicht möglich.

PROBLEME UNTER WINDOWS
Falls die Konfigurationssoftware nicht in der Lage ist, einen gültigen COM- Port zu finden, können Sie die Software als Administrator starten. Alternativ kontrollieren Sie die Nummer des COM-Ports. Wenn der Wert zu hoch ist, versuchen Sie, die Port-Nummer (Silabs Gerät) zu rekonfigurieren, z. B. zu COM1 - COM4. Für Laptops empfiehlt es sich auch, im Gerätemanager jeglichen USB Stromsparmodus abzuschalten.


5 SOFTWARE VERWENDUNG

Nach erfolgreicher Verbindung der Spirit FBL-Einheit sollten alle Konfigurierungsmöglichkeiten zugänglich sein. Falls nicht, versuchen Sie, entweder eine andere COM-Schnittstelle (Gerät) auszuwählen oder die Software neu zu starten, die Einheit von der Stromversorgung zu entfernen und den Vorgang wiederholen.

Stellen Sie sicher, dass die Software erst nach der Initialisierung des Spirits gestartet wird.

5.1 CONNECTION TAB (Verbindungsreiter)

Dieser Reiter zeigt den gegenwärtigen Stand der Verbindung an, informiert Sie über die aktuelle Version der Firmware, zeigt die Seriennummer der angeschlossenen Einheit an und erlaubt Ihnen, die COM-Schnittstelle zu ändern. Zusätzlich verfügt er über einen Assistenten “Wizard” für das erste Setup.

1en.png


Wir empfehlen, diesen Assistenten zu verwenden, da er Sie auf dem einfachsten und leichtesten Weg durch die Grundinstallation führt.

5.2 GENERAL (Allgemein)

Falls Sie die Einheit bereits mittels Assistenten eingerichtet haben, können Sie hier zusätzliche Einstellungen in Ihrem Setup vornehmen. Alle Werte beziehen sich auf die Einstellungen, die Sie im Assistenten ausgewählt haben.

2en.png

ACHTUNG
Wann immer Parameter verändert werden, wird der neue Wert sofort angewendet, aber nicht gespeichert. Nur wenn die Einstellungen manuell gespeichert werden, gehen alle ungesicherten Änderungen nach Trennung von der Stromversorgung nicht verloren (s. Back-up Reiter).

Position
Wählen Sie die Montageposition und Ausrichtung der Einheit. (S. Abschnitt 3 Installation)

Swashplate (Taumelscheibe)
Wählen Sie den Taumelscheibentyp Ihres Modells. In den meisten Fällen ist dies CCPM 120° oder CCPM 120 ° (umgekehrt)
Jegliche Taumelscheibenmischung im Sender muss ausgeschaltet sein. Es muss auf Typ H1 (Einzelservo) festgelegt werden.

Receiver (Empfänger)
Wählen Sie den Empfängertyp aus, den Sie einsetzen:
PWM – Standardempfänger.
PPM – Einzelne Anschlussleitung.
Spektrum DSM2/DSMX – DSM2 or DSMX satellite.
Futaba S-BUS – receiver connected via SBUS.
Jeti EX Bus – receiver connected via EX Bus (for JETI model integration).
SRXL/SUMD – receiver connected via SRXL, SUMD, UDI.

Flight style
Legt fest, wie das Modell sich im Flug verhält. Dieser Paramater wird benutzt, um das Verhalten nach den Anforderungen des Piloten zu kontrollieren und anzupassen.

Niedrigere Werte bedeuten, dass das Modell sich in einer beständigeren,kontrollierten Art und Weise verhält und sich roboterhafter anfühlt. Höhere Werte bedeuten natürlicheres Verhalten. Die Reaktion auf Knüppelbewegungen ist ähnlich der mit Paddelstange.

Dieser Parameter wirkt sich nicht darauf aus, wie stabil das Modell ist. Die meisten Piloten ziehen den Standardwert -4 vor.

Channels (Kanäle)
Nach Anklicken der Schaltfläche zeigt sich das Fenster mit der Kanalzuordnung. Sie können hier jedem Kanal jede Funktion zuordnen. Die Anzahl der verfügbaren Kanäle hängt vom Empfängertyp ab. Denken Sie daran, nur einen Kanal für jede Funktion zuzuordnen.

Wenn ein Kanal der Drosselfunktion zugeordnet ist, kann die Drosselleistung der Einheit von der AUX Position bezogen werden. Wenn ein Kanal der Bankfunktionzugeordnet ist, dann ist die Bankumschaltung aktiviert (s. Kapitel 5.6).
Wenn der Kreiselempfindlichkeitsfunktion kein Kanal zugeordnet ist, ist es möglich, die Kreiselempfindlichkeit direkt durch diese Software im „Sensor“- Reiter zu konfigurieren. Der nicht zugeordnete Kanal könnte auf einer anderen Art und Weise genutzt werden, z. B. für Bankumschaltung.

2 1en.png


Failsafe
Für PPM-Empfänger, Futaba S-BUS, Spektrum DSM2/X, Jeti EX Bus, SRXL/SUMD kann ein Failsafe direkt im Spirit eingestellt werden. Die Werte aller Kanäle werden durch Klicken auf die Set-Taste Failsafe im Gerät gespeichert. Wenn das Empfängersignal für 1 Sekunde oder länger verloren geht, werden die gespeicherten Failsafe Einstellungen automatisch ausgelöst.

Arten von Empfängertypen wird der Failsafe-Modus im Sender oder Empfänger programmiert.

Echtzeit - Tuning
Durch die Zuordnung eines Parameters (P) ist es möglich, die Einstellungen direkt von Ihrem Sender aus zu ändern. Sie können bequem einen gewählten Parameter durch Änderung des Kanalwertes (zum Beispiel durch ein Potentiometer) einstellen. Somit benötigen Sie überhaupt keine Konfigurationssoftware mehr. Ein normaler Sender ist genug. Eine Änderung des entsprechenden Kanals wird sofort den Wert des Parameters ändern. Ein maximaler Ausschlag setzt den höchsten Wert des Parameters, während ein minimaler Ausschlag den niedrigsten Wert einstellt. Echtzeit Parameter-Tuning hat die höchste Priorität. Wenn also aktiviert, werden die gespeicherten Werte aus dem Profil oder einer Bank ignoriert.

Diese Funktionalität ist nur dann aktiviert, wenn die Konfigurationssoftware nicht verbunden ist. Dieses verhindert mögliche Konflikte. Sobald die Software getrennt wird, wird der ausgewählte Parameter durch den Kanalwert konfiguriert. Für den Fall, dass die Software erneut gestartet wird, wird der Wert der Echtzeit - Tuning im Speicher behalten. Wenn die Konfigurationssoftware ausgeführt wird, werden vorherige Regelnangewendet. (Echtzeit -Tuning ist deaktiviert und Änderungen am Kanalwert beeinflussen nicht den ausgewählten Parameter).

Sie können 3 verschiedene Parameter und Funktionen gleichzeitig mit dieser Funktion konfigurieren.

Wenn die Funktion (F) zugewiesen ist, ist diese aktiv, wenn sein Wert gleich 1 ist. Die Vibrationsanalyse-Funktion ermöglicht es Ihnen, Vibrationen während des Fluges zu messen. Es wird später im Abschnitt der Diagnose Registerkarte beschrieben.

Wenn das Parameter-Tuning abgeschlossen ist, wird empfohlen, die Software zu öffnen und die Einstellungen im Gerät zu sichern. Heben Sie dann die Zuweisung des Parameters auf, so dass der Wert nicht mehr verändert werden kann.

ACHTUNG
Es wird immer äußerste Vorsicht empfohlen, damit Sie nicht die Kontrolle über das Modell verlieren!

5.3 DIAGNOSTIC TAB (Diagnosereiter)

Sobald die Einstellungen im vorherigen Reiter ausgeführt wurden, empfiehlt es sich, jetzt alle Anpassungen und Änderungen, die im Sender erforderlich sind, auszuführen, damit die Bedienelemente des Senders dem dargestellten Output des Systems entsprechen. Im Allgemeinen ist jeder Sender anders und der Mittelpunkt des Kanals ist nie genau der gleiche. Verschleiß und Umwelteinflüsse können auch eine Auswirkung haben, was verursacht, dass sich der Mittelpunkt der Kanäle verschiebt. Eine weitere Prüfung ist der maximale und minimale Wert eines jeden Kanals. Hier passen Sie Ihre Abweichungen an, indem Sie die Anpassungen des Servo-Endpunkts Ihres Senders benutzen.

3en.png


ACHTUNG
Für einen einwandfreien Betrieb des Gerätes ist es erforderlich, dass die Bewegungsrichtung von jedem Kanal dem der Anzeigen entspricht.

Ebenso ist es notwendig, die Kanal-Prozentwerte von Pitch, Aileron, Elevator und Rudder zu überprüfen. Diese Kanäle müssen bei etwa 0% zentriert sein. Das Gerät erkennt automatisch die neutrale Position bei jeder Initialisierung. Benutzen Sie weder die Trim- oder Subtrim-Funktionen Ihres Senders für diese vier Kanäle, da die Spirit FBL-Einheit dieses als eine Befehlseingabe ansehen wird.

Stellen Sie sicher, dass alle Trim- und Subtrimeinstellungen im Sender auf „0“ sind! Es wird ebenso empfohlen die minimalen und maximalen Werte für beide Richtungen einzustellen.

Wenn diese Werte im Diagnosereiter nicht gleich sind, also nicht -100% und 100% betragen, ist es notwendig, dass die Differenz im Sender für beide Richtungen angepasst wird. Die Einstellungen werden im Sender über die Funktion „Servowege“ vorgenommen.

Nach diesen Einstellungen sollte in Bezug auf den Sender alles konfiguriert sein. Falls jedoch einige Kanäle zu sehr um die Mitte schwingen, kann es auf Abnutzung des Sender-Potentiometers hinweisen. Dies kann durch Erhöhung der Knüppel-Totzone kompensiert werden (Thema wird später behandelt).

Wenn die Werte in den Kanälen Aileron, Elevator oder Rudder fett markiert sind, sieht das System dies als Befehl zum Bewegen/Rotieren der Achsen an.

Der Kanal Gyro zeigt den Gain-Wert für die Heckempfindlichkeit an, welcher durch den Sender gesteuert wird. Das Programm zeigt auch den aktuellen Modus Gyro:

  • N – Normal (Rate)
  • HL – Head Lock
  • HF – Head Lock mit aktiver Funktion (behandelt im Stabi-Reiter)


SPECTRUM ANALYSER (Spektrum Analysator)

Der Frequenz-Analysator ist ein Instrument zur Schwingungsmessung des Modells. Es ist ein Diagnosewerkzeug, um zu bestimmen, welche rotierenden Teile ein Problem verursachen. Mit diesen Informationen können Sie leichter Probleme mit Ihrem Modell identifizieren und beheben.

Den Zustand des Modells können Sie in der "Vibrations" Leiste überprüfen. Diese zeigt die allgemeine Schwingungsamplitude in der ausgewählten Achse.

Es ist möglich, Vibrationen auf drei verschiedenen Achsen zu messen:

  • X - Querachse
  • Y - Längsachse
  • Z - Hochachse
  • In-Flight - Spektrum-Player

Die Live-Kurve zeigt Frequenzen der aktuell ausgewählten Achse an. Das ermöglicht Ihnen, sowohl die Frequenz als auch den Umfang der Vibration auf der ausgewählten Achse zu sehen.

Vibrationen werden, abhängig von einigen unterschiedlichen Faktoren, auf jede Achse übertragen. Die Frequenzen und der Umfang hängen von der Konstruktion des Modells ab. Im Allgemeinen sind die Vibrationen auf der Y- Achse (Querruder) am höchsten. Wir empfehlen aber alle Achsen zu kontrollieren. Jedoch sollten auf allen Achsen und zu jeder Zeit die Vibrationen 50% nicht überschreiten. Falls die Vibrationen 90% oder mehr betragen, hat das Modell ein Problem, das korrigiert werden muss. Falls die Höhe 90% oder mehr auf irgendeiner Achse beträgt, wird empfohlen, das Problem, das diese extremen Vibrationen hervorruft, vor dem nächsten Flug zu beheben. Obwohl die Spirit FBL-Einheit gegen Vibrationen höchst widerstandsfähig ist, können dieseunerwünschte Wechselwirkungen mit der Spirit FBL-Einheit auslösen und auch mechanisches Versagen des Modells verursachen. Solche starken Vibrationen können verursachen, dass Loctite versagt und andere mechanischen Teile brechen.

Vibrationsniveau:

  • Vibrationen bis 50% - Vibrationen auf einer normalen und annehmbaren Höhe
  • Vibrationen zwischen 50% und 90% - erhöhtes Vibrationsniveau
  • Vibrationen über 90% - extremes Vibrationsniveau

Abgesehen vom Gesamtvibrationsniveau, das nicht über 50% liegen sollte, sollte auch keine bestimmte Frequenz (Spitzenwert) von 50% übersteigen. Alles über dieser Höhe sollte ein Grund zur Sorge sein und erfordert weitere Untersuchungen.

Um die Kurven zu vergleichen, können Sie die Freeze-Taste benutzen. Die aktuelle Live-Kurve wird angezeigt und die Kurve, die mit der Freeze-Taste benutzt wurde, wird gespeichert und als Unterkurve dargestellt. Diese Kurve kann mit der Clear-Taste gelöscht werden.

Es ist möglich, die Frequenzkurven zu speichern. Beim Benutzen der To image-Taste, wird die aktuelle Kurve als Bild gespeichert.

Der Spektrum Analysator ist in der Lage, Vibrations-Frequenzen bis 500Hz zu entdecken (drehende Teile bei Geschwindigkeiten von bis zu 30.000 Umdrehungen pro Minute).

3 1fen.png


Messvorgang

  1. Entfernen Sie die Haupt- und Heckrotorblätter vom Modell
  2. Setzen Sie das Modell auf eine geeignete, weiche Unterlage (z. B.Teppich, Rasen)
  3. Stellen Sie die Blattverstellung von Haupt- und Heckrotor auf ca. 0°
  4. Starten Sie den Spektrum Analysator (dies sperrt auch alle Servos)
  5. Lassen Sie den Motor auf den üblichen Drehzahlen laufen
  6. Wechseln Sie zwischen der X-, Y- und Z-Achse, speichern Sie jeweils ein Bild.
  7. Überprüfen Sie die Vibrationen in allen Achsen
  8. Halten Sie den Motor

Erkennen von Vibrationen

Um zu erkennen, welche Komponente oder welches Teil unnormale Vibrationen verursacht, ist es erforderlich, die Geschwindigkeit der höchsten Spitzen zu bestimmen. Der Hauptrotor hat die niedrigste Geschwindigkeit und die Heckrotor-Geschwindigkeit wird ca. 4,5 x höher sein. Allgemein kann man sagen, je kleiner das Modell, desto höher die Kopfgeschwindigkeit.

Um herauszufinden, welches Teil des Modells die unerwünschten Vibrationen verursacht, bewegen Sie den Cursor zur Spitze und kontrollieren Sie die Kopfdrehzahl (RPM). Die Drehzahl des Hauptrotors ist gewöhnlich im Bereich 1500 bis 3500 RPM. Deshalb ist es bei dieser Drehzahl wahrscheinlich, dass es ein Problem mit dem Hauptgetriebe, der Hauptantriebswelle, dem Hauptantriebswellenlager oder dem Rotorkopf selbst besteht.

Die meisten übermäßigen Vibrationen sind gewöhnlich, aber nicht immer, auf das Heck bezogen. Um zu kontrollieren, ob die Vibrationen vom Heck kommen, sollten Sie die Frequenzspitze finden, die circa 4,5 x höher ist als die Frequenz des Hauptrotors.

Sobald Sie identifiziert haben, welcher Teil des Hubschraubers die unerwünschten Vibrationen hervorruft, können Sie nach und nach Komponenten entfernen, von denen Sie annehmen, dass sie fehlerhaft sind. Wiederholen Sie dann den Messvorgang solange, bis Sie die Vibration verschwindet. Sobald die Höhe der Vibration auf ein annehmbares Niveau gefallen ist, haben Sie die fehlerhafte Komponente gefunden und können sie ersetzen.

Messungen mit installierten Heckblättern bringt einige Sicherheitsbedenken, zeigt aber ein höheres Maß an Vibrationen. Wenn Sie die Messungen auch mit den Hauptrotorblättern durchführen, steigt die Gefahr, aber die Schwingungsanalyse wird genauer gemessen. Mit montierten Heckrotorblättern verschlechtern sich die Vibrationen deutlich, daher ist es wichtig, dieses Problem zu lösen.

HINWEIS
Modelle mit Benzinmotor sollte nicht ohne Last betrieben werden! Eine Schwingungsanalyse ohne Rotorblätter ist daher nicht möglich.

In-Flight - Vibrationsanalyse vom Flug

Diese Funktion erlaubt die Aufzeichnung des Vibrationsspektrums von jedem Moment des Fluges. Mit dem ausgewählten Kanal können Sie dem Gerät sagen, wenn das Spektrum aufgenommen werden soll. Das Spektrum kann später in der Spirit Einstellungs-Software mit der In-Flight Option im Diagnose / Spektrum Player angesehen werden. Das gespeicherte Vibrationsspektrum wird solange gespeichert, bis das Gerät vom Strom getrennt wird. Der gespeicherte Datensatz wird bei wiederholter Aktivierung überschrieben.

Für die Vibrationsmessung im Flug setzen Sie die Sonderfunktion im Register Allgemein / Kanäle. Weisen Sie die Funktion F: Vibrationsanalyse der Achse zu, die Sie messen möchten. Dann wählen Sie einen Kanal zu, der für die Aktivierung der Funktion verwendet werden soll.

Sobald der Wert gleich 1 ist, wird das Vibrationsspektrum gespeichert. Die Aufzeichnung wird genau in dem Moment gespeichert, wenn die Funktion von Stellung 0 auf 1 geändert wird.

Während des Fluges ist es nur nötig, die Stellung des ausgewählten Schalters des Senders zu ändern. (z. B. 2-Wege-Schalter). Nach der Landung können Sie das Gerät mit der Software verbinden und den Spektrum-Player öffnen (wählen Sie In-Flight Achse um das Spektrums anzuzeigen).

BEC TESTER

Der BEC Tester wird benutzt, um anzuzeigen, ob Ihre Stromversorgung für die Einheit, Empfänger und den Servos ausreichend ist. Der Zweck ist die höchste Stromspitze zu erreichen und sicherzustellen, dass die gelieferte Spannung nicht unter die sichere Höhe fällt.

Becen.png


Klicken Sie auf die Start-Taste um den Test zu starten. Nach 20 Sekunden sollte er fertig sein. Wenn Sie auf irgendein Problem treffen, dann ist Ihre Stromversorgung unzureichend und sollte nicht benutzt werden. In diesem Fall sollte eine Stromversorgung mit einer höheren Spannung benutzt werden.

LOG VIEWER

Das Log wird benutzt, um Ereignisse während des Fluges aufzuzeichnen. Falls ein Problem auftritt und der Grund nicht sofort ersichtlich noch bekannt ist, kann es helfen, das Problem durch Nachsehen im Log zu identifizieren.

Es funktioniert so, dass es verschiedene Ereignisse vom Einschalten der Einheit an aufzeichnet. Wenn ein Ereignis passiert, können Sie das im Log sehen. Ein Log-Eintrag wird alle 10 Sekunden ausgeführt. Wenn Sie auf den „open log“-Schalter klicken, können Sie das aktuelle Flug-Log sehen, das alle Ereignisse des letzten Fluges beinhaltet. Wenn der Strom abgeschaltet wird, wird das Log nur gelöscht, wenn es keine ernsthaften Fehler enthält.

Falls während des Fluges ein größeres Problem auftritt Tr.png, wird das Log dauerhaft im Speicher der Einheit gespeichert und bleibt so lange darin, bis das Log geöffnet wird. Wenn sich ein gespeichertes Log im Speicher befindet, wird der Benutzer mit der Nachricht „Log vom vorhergehenden Flug steht zur Verfügung!“ benachrichtigt und das Log vom Flug, bei dem das Problem auftrat, wird geöffnet. Wenn zum Beispiel ein Signal verloren geht oder die Stromversorgung versagt, können Sie dies im Log finden. Das Log des ersten Fluges, bei dem das größere Problem auftritt, wird immer gespeichert. Wenn es nicht geöffnet wird, wird es nicht durch ein neueres überschrieben. In diesem Zustand wird der Nutzer auch durch verschiedene zyklische Verstellungsstöße („cyclic pitch pump“) während des Initialisierungsprozess benachrichtig.

Das Log kann die folgenden Ereignisse beinhalten:


Fa.png Good Health Message (Benachrichtigung guter Zustand):

Das Modell ist in gutem Zustand. Die Einheit hat kein Problem erkannt.

I.png Calibration Finished (Kalibrierung abgeschlossen):

Die Sensor-Kalibrierung war erfolgreich.

I.png Governor was Engaged ( Governor wurde aktiviert):

Zur Erzielung der gewünschten Geschwindigkeit. Governor ist ab jetzt aktiv.

Zv.png Cyclic Ring Activated (Zyklische Ring aktiv):

Der zyklische Ring hat seinen höchsten Neigungswinkel erreicht. Das zeigt an, dass das Modell nicht in der Lage war, die gewünschte Korrektur wie erforderlich auszuführen. In den meisten Fällen ist dies nicht relevant. Aber es ist möglich, dass der Wert des zyklischen Ring-Parameters zu niedrig ist und das Modell nicht so schnell wie beabsichtigt auf der Quer- oder Höhenruderachse rotieren kann. Eventuell wurde auch ein zu hoher Wert für die Rotationsgeschwindigkeit konfiguriert Es kann auch sein, dass das Modell im Vorwärtsflug schnell steigt. Wir empfehlen, diesen Parameter so hoch wie mechanisch möglich einzustellen. Herstellerangaben beachten, da ansonsten Gefahr eines sogenannten „Boom-strikes“ besteht.

Zv.png Rudder Limit Reached (Ruder-Limit erreicht):

Der Ruderservo hat sein konfiguriertes Limit erreicht. Wenn dieses Ereignis vor oder nach einem Flug eintritt, ist dies kein Problem. Wenn Sie dies während des Fluges sehen, zeigt es an, dass das Ruder nicht richtig funktioniert. In den meisten Fällen ist es während des Fluges als schwache Ruderreaktion oder „Blow-out“ ichtbar. Wenn das Modell richtig eingerichtet ist, könnte es an niedriger Rudereffizienz liegen, z. B., die Heckrotorblätter sind zu kurz oder die Kopfgeschwindigkeit zu niedrig. Auch ein mechanisches Problem oder ungenügende Ruderlimits sind möglich.

Zv.png RPM Sensor data are too noisy (Drehzahlsensordaten zu verrauscht):

RPM Ausgabe ist sehr instabil und oszilliert mehr als +/- 100 RPM. Die Daten aus dem Sensor sind für den Governor unbrauchbar. Verwenden Sie eine zusätzliche Abschirmung und montieren Sie Ferritringe. Erhöhen Sie den Wert des RPM-Sensor-Filters in den Experten-Einstellungen.

Zv.png Received Frame was Corrupted (Empfangsdaten beschädigt):

Empfängerdaten wurden beschädigt und ignoriert. in den meisten Fällen ist dieses Ereignis kein Problem. Wenn jedoch solche Meldungen häufig erscheinen kann die Ursache eine schlechte Verbindung zum Empfänger oder übermäßige Störungen sein. Prüfen Sie die Qualität der Verbindung zwischen dem Gerät und dem Empfänger.

Tr.png RPM Sensor data are lost (RPM Sensordaten sind verloren):

Sensordaten lesen fehlgeschlagen - RPM-Sensor Störung wahrscheinlich aufgetreten. Sensor sendet keine Daten für 2 Sekunden oder länger. Stellen Sie sicher, dass die Sensor Verdrahtung korrekt ist und dass der Motor sich dreht, wenn HOLD (Halten) unscharf geschaltet wird.

Tr.png Receiver Signal Lost (Empfänger Signalverlust):

Das Signal geht plötzlich verloren. Dieses Problem sollte zu keiner Zeit auftreten und muss vor dem nächsten Flug behoben werden. Es könnte an einem Problem mit der Empfänger- und /oder Senderantenne liegen. Es könnte ein fehlerhaftes Empfängerkabel sein oder die Verbindung zwischen Einheit und Empfänger. In einigen Fällen kann das Signal aufgrund elektrostatischer Entladung, hervorgerufen durch statischen Aufbau, verloren gehen, dies passiert gewöhnlich mit Zahnriemen betriebenen Hubschraubern.

Tr.png Main Loop Hang Occurred (Hauptprogrammschleife verzögert):

Die Hauptprogrammschleife war verzögert. Das kann passieren, wenn die Verkabelung nicht richtig ist oder unnormale elektrische Geräuschinterferenz mit der Einheit auftritt, z. B. von einem BEC. Wurde die Konfigurationssoftware eingesetzt, könnte dies bedeuten, dass die Verbindung mit der Spirit FBL-Einheit langsamer ist als sie sein sollte.

Tr.png Power Voltage is low (Spannungversorgung ist niedrig):

Die Stromversorgungsspannung ist niedriger als 2.9V. Dies bedeutet, dass Sie ein BEC benutzen müssen, das in der Lage ist, mit höheren Lasten umzugehen. In seltenen Fällen könnte es an fehlerhaften Verbindungen der Kabel liegen.

Tr.png Vibration Level is very high (Vibrationsniveau ist sehr hoch):

Vibrationen erreichen ein Niveau, das nicht normal ist und das kann die Intaktheit des Hubschraubersbeeinträchtigen. Dieses Ereignis kann während harter 3D-Manöver häufiger vorkommen.


Alle überprüften Logs werden als PDF-Dateien im Dokumentenverzeichnis gespeichert.

5.4 SERVOS TAB (Servos)

Dieser Reiter wird für die Servo-Konfiguration eingesetzt, bitte achten Sie darauf, dass die richtigen Frequenzen eingestellt und die Servo-Richtungen richtig festgelegt werden.

4en.png

Typ
In diesem Abschnitt setzen Sie die Werte gemäß den Spezifikationen Ihres Servoherstellers für neutralen Puls und Frequenz. Für analoge Servos beträgt die Frequenz gewöhnlich maximal 60 Hz.

Subtrim (tuning) (Servomittenverstellung)
Idealerweise, ohne installierten Rotorkopf, benutzen Sie eine Taumelscheibenlehre, um die Taumelscheibe und die Servo-Hörner so anzugleichen, dass die Taumelscheibe und die Servo-Hörner in horizontaler Position bzw. senkrecht zur Hauptantriebswelle sind Dies erfolgt durch Anklicken der Position Subtrim (tuning). Dies wird die Spirit FBL-Einheit in einen Spezialmodus schalten, in dem die kollektive Position neutral sein wird und die Servos zentriert werden. Zusätzlich wird die Stabilisierung abgeschaltet. Servos können zu diesem Zeitpunkt leicht angepasst werden. Wenn alles erledigt ist, sollte die Taumelscheibe genau rechtwinklig zur Hauptantriebswelle und zusätzlich der kollektive Pitch bei 0° sein (es ist möglich, den Neigungswinkel mit einer Pitcheinstelllehre zu messen, mit befestigten Rotorkopf und Blätter).

In den meisten Fällen ist es auch notwendig, dass die Servo-Hörner rechtwinklig zur Hauptantriebswelle sind. Alle Servos, d.h., CH1, CH2, CH3 und CH4, sind separat auf individuellen Schiebern gesetzt. CH1 und CH3 sind die Querruder-Servos. CH2 kontrolliert das Höhenruder und CH4 das Seitenruder.

Es ist auch erforderlich, Subtrim und die Mechanik des Seitenruders so einzustellen, dass das Servo-Horn rechtwinklig zu seinem Gehäuse steht und gleichzeitig der Seitenruder-Pitch (Heckrotorblätter) bei 0° ist. Diese Einstellung beeinflusst das Stop-Verhalten des Seitenruders.

Wenn alles eingestellt ist, muss Subtrim (tuning) Kästchen wieder deaktiviert werden, um den speziellen Modus abzuschalten.

HINWEIS
Nach Beenden des speziellen Modus wird die Stabilisierung und das Ruder wieder funktionieren. Stellen Sie sicher, dass Ihr kollektiver Pitch-Kanal im Sender richtig konfiguriert ist. Das heißt, Sie sollten im Diagnose-Reiter -100% bis 100% sehen. Vergewissern Sie sich doppelt, dass 0% im Diagnose-Reiter mit der mittleren Position des Kollektiv/Gasknüppels übereinstimmt (mit linearer -100% bis 100% kollektiver Pitchkurve).

Cyclic servos reverse (Servoumkehr)
Wählen Sie hier, welche Servos in umgekehrter Richtung laufen sollen. Während Sie den kollektiven Pitch verändern sollten sich alle Servos in dieselbe Richtung bewegen. Nach dieser Einstellung sollte das Modell richtig auf alle Hebelbewegung reagieren. Dies ist der wichtigste Parameter!

Servo Travel Correction (Servolaufweg Korrektur)
Hier können Sie die Laufrichtung für jeden Servo individuell modifizieren und korrigieren. Einige Servos sind in Bezug auf den Laufweg an ihren höchsten Limits nicht sehr genau und diese Ungenauigkeit kann eine negative Auswirkung auf die Flugeigenschaften haben. Sobald Sie in diesem Abschnitt sind, schaltet die Einheit in den Modus zur Ausführung dieser Korrekturen.

Es wird vorausgesetzt, dass im vorherigen Schritt Subtrim (tuning) die Taumelscheibe bei null Kollektiv (0° Rotorblätter-Pitch) eingestellt wurde. Der Vorgang ist so, dass Sie die Taumelscheibenlehre einsetzen sollten, um festzustellen, ob es bei irgendeinem der Servos eine Abweichung in tiefster und höchster Kollektiv-Position gibt. Für die jeweils höchsten und tiefsten Positionen ist es erforderlich, die Werte separat einzustellen – das ist der Grund, warum es 6 Schieber gibt. Wenn der Laufweg niedriger als erforderlich ist, erhöhen Sie den Wert, ist er zu hoch, verringern Sie ihn. Um die Schieber im sekundären Teil zu aktivieren, bewegen Sie den kollektiven Pitch in die entgegengesetzte Richtung.

Diese Korrektur ist auch sinnvoll, wenn es auf dem Hubschrauber eine asymmetrische Geometrie gibt, welches die Probleme hervorruft, das keine gleichen positiven und negativen Pitch-Werte zu erreichen sind. In diesem Fall ist es notwendig die Minimum- oder/oder Maximumwerte für alle drei Servos anzupassen.

3ken.png

5.5 LIMITS TAB (Begrenzungen)

Dieser Reiter behandelt Begrenzungen und Servo-Laufweg-Reichweiten.

5en.png

Cyclic Ring (tuning) (Zyklischer Ring – tuning)
Dieser Parameter stellt den elektronischen zyklischen Ring ein; dies erlaubt, dass das Modell die höchsten zyklischen Reichweiten ohne mechanisches Scheuern (Verbindung von Servo-Hörner, Gestänge und Anlenkungen) erreicht. Dieser Parameter funktioniert als ein sogenannter elektronischer zyklischer Ring („cyclic ring“).

ACHTUNG
Die folgenden Einstellungen müssen sehr sorgfältig durchgeführt werden, um Schäden am Modell oder den Servos zu vermeiden. Überschreiten Sie niemals die empfohlen Herstellerangaben für das Modell, da es ansonsten zu einem Boomstrike kommen kann.

Als erstes setzen Sie die gewünschte Kollektiver Pitch Reichweite, z. B. +/-12°. Wir empfehlen eine -100% bis 100% lineare kollektive Pitch-Kurve im Sender zu benutzen. Jetzt ist es an der Zeit, den Ail/Ele maximalen zyklischen Neigungswinkel einzustellen. Versuchen Sie, den größtmöglichen Ausschlag innerhalb der Herstellervorgaben einzustellen. Dieser Parameter beeinflusst nicht direkt die Rotations-Geschwindigkeit, aber wenn er zu niedrig ist, kann es sein, dass das Modell keine beständigen Nick- und Rollraten hat. Diese Einstellung sollte mit 0° kollektiver Pitch ausgeführt werden. Dann prüfen Sie sorgfältig die maximale Knüppelabweichung in allen Richtungen, um sich zu vergewissern, dass kein mechanisches Scheuern auftritt. Dies sollte auch mit dem maximalen und minimalen kollektiven Pitch gemacht werden. Generell gibt es keinen Grund, den Ausschlag höher einzustellen als den maximal kollektiven Ausschlag (Pitch).

Dieser Parameter funktioniert wie der Elektronische Cyclic Ring.

Wenn Sie den Winkel des kollektiven Pitch vergrößern, muss dieser Parameter kontrolliert und in manchen Fällen angepasst werden, damit bei den neuen maximalen und minimalen Pitchwinkeln kein Scheuern verursacht wird. Falls der Winkel des ausgewählten zyklischen Rings unzureichend ist, ist es möglich, dass Pitch-up während eines schnellen Vorwärtsflug passieren kann (sogar, wenn die Pitch-up Kompensation auf den maximalen Wert eingestellt ist). Das liegt daran, dass das Modell mit den eingestellten Ausschlägen keine ausreichenden Korrekturen zufügen kann.

Rudder end-points (Seitenruder Endpunkte)
Links / Rechts limit - – Stellt den Minimum- und Maximum-Ausschlag der Ruder-Rotorblätter ein. Wir empfehlen, diese Werte für beide Richtungen auf die maximal vom Hersteller des Hubschraubers zulässigen Ausschläge einzustellen. Ansonsten kann das Ruder während anspruchsvoller Manöver nicht die Gierrichtung beibehalten und es kann zum Ausbrechen des Hecks kommen.

5.6 SENSOR TAB

Dieser Reiter ist der letzte wichtige Teil der Einstellungen, der konfiguriert werden muss.

6en.png


Sensitivity (Empfindlichkeit)
Der Drehknopf stellt die Empfindlichkeit des Kreisels für die Höhen-, Seiten- und Querruder-Achsen ein.

Cyclic Gain (Zyklische Empfindlichkeit) - Je höher der Wert,desto größer die Genauigkeit innerhalb der Kontrollschleife. Der Standardwert ist auf 55% Empfindlichkeit voreingestellt. Für die meisten Modelle wird ein optimaler Wert von ca. 60% vorgeschlagen.

Rudder Common Gain (Allgemeine Seitenruder - Kreiselempfindlichkeit) 100% bedeutet keine Vervielfachung. Dies ist der empfohlene Wert für Hubschrauber der 550-Klasse und kleiner. Für größere Hubschrauber ist der Wert oft höher, 1.30% könnte gut sein. Die Kreiselempfindlichkeit des Senders sollte für den ersten Flug auf ca. 60% konfiguriert werden.

Rudder Gain (Ruder Empfindlichkeit) - Dieser Parameter ist nur dann aktiviert, wenn der Kreiselempfindlichkeit kein Kanal zugeordnet ist. Es ersetzt die Funktion der Kreiselempfindlichkeit des Senders, so dass Sie den Wert direkt in der Software einstellen können.

Die Ruder Empfindlichkeit in der Software oder im Sender kann wie folgt eingestellt werden:

  • Head-Lock-Modus: 1% bis 100%
  • Normal (Rate) oder spezielle Funktionen: -100% bis 0%

Negative gyro gain can be used to activate the rescue or the stabilisation modes – check the Stabi tab.

Rotation speed
The default value is 8 and will favor beginners more, the higher the value, the faster the rate of rotation. This factor also depends on the mechanical linkage ratio or D/R (Dual Rate) in the transmitter and also on the Aileron/Elevator limit. Make sure the value is not too high else it can cause unwanted and inprecise movements.

default value - 8

We recommend to set the Cyclic rotation rate within a range of 8 - 11. Remember that DFC rotor heads tend to rotate faster so it's better to initially start with a lower value for them.

For the Rudder rotation rate pilots are preferring a range of 9 – 11.

5.7 STABI TAB

The Spirit unit offers you the options of model stabilization and rescue mode.The stabilization function, once activated, will recover the model to a horizontal position without any other input from the pilot, this can be used as a “bail-out” feature when trying new maneuvers and can help with the learning process.

7en.png

Rescue mode complements the normal operation of the Spirit unit. If activated, the model will recover to a horizontal position and add collective pitch as per the settings. This function can be used any time when the pilot loses orientation or control of the model.

The Spirit unit allows you to assign a stabilization or rescue mode using the gyro gain channel. 0 - 100% gain in the transmitter is always heading lock gyro mode and with -100 – 0% gain, you are able to activate stabilization or rescue mode. This means that instead of normal (rate) mode, it will stay in heading hold gyro mode, plus rescue/stabilization is activated. So, while rescue/stabilization mode is activated, a gyro gain of -70% is considered as 70%. This behavior can be also observed in the Diagnostic tab.

NOTE
Some transmitters have a gyro range of 0 to 100% where 50% is the middle - zero gain (e.g. Spektrum DX6i). Others use a range of -100% and 100%, where 0% is the middle.

Function
Here is where you select which mode should be activated at negative gyro gains.

Disabled - Normal (Rate) gyro mode.

Rescue (Normal) - Recovers the model to an upright horizontal position – skids always to the ground. This recovery mode is great for the beginners.

Rescue (Acro) - Recovers the model to a horizontal position, inverted or upright, whichever is closer at the time of activation. For intermediatte and advanced pilots that are flying acrobatic manouvers.

Stabilization (Normal) – stabilization mode - skids always to the ground. This mode is good for learning the basics such as hovering and slow transitions. Model is always pushed to the horizontal position.

Stabilization (Acro) – stabilization mode - inverted or upright, whichever is closer at the time of activation. This mode is used for learning the basics of acrobatic maneuvers. If the sticks are in the center, the model has tendency for returning to the horizontal position.

Stabilization (Scale) – stabilization mode - skids always to the ground. This mode is used for a scale flying. Gyro mode is Normal (Rate).

Coaxial – stabilization mode - inverted or upright, whichever is closer at the time of activation. The steering behavior is very similar to a coaxial helicopters. Great for learning a hovering practices.

WARNING
If using these modes, be sure your helicopter is initialized on a flat surface, not tilted to any side. Do not tilt the helicopter for more than 5 seconds.

The rescue mode is very demanding on the BEC. Be sure your BEC can handle such peak loads. In case it is is not sufficient your model could crash! Never exceed angles recommended by manufacturer of the model, else the mechanics can be damaged during the flight!

Flybar mechanic
If your helicopter is equipped with traditional flybar mechanics, you have to enable this parameter in order to use the stabilization or rescue modes. All settings are the same for flybarred helicopters except this parameter.

NOTE
Flybarless helicopters must be configured and operated with the Flybar mechanic parameter disabled!

Rescue collective pitch
This determines how quickly the model will recover to a horizontal position. 100% means the maximum deflection of the blades, which was configured in the Servos tab. It is very important to check whether the rescue mode works correctly before the first flight (on the bench without the motor/rotors running). Collective pitch should be always positive with the rescue engaged - while helicopter is on the ground

Sticks priority
Specifies the amount of control while configured mode is activated. The higher the value, the more the model will react to stick movements.

Direction control rate
This specifies the rate of controlling direction for the stabilization mode. Low values are well suited for beginners to get coaxial like behavior. Higher values are more appropriate for scale flying.

Acro Delay
Specifies a time period for the Rescue (Normal), when the model is recovered from the inverted flight. Until the period is reached, the rescue has the same behavior as the Rescue (Acro). In this way, faster ascending to a safe level can be achieved.

5.8 ADVANCED TAB

This tab is for more advanced configuration of the Spirit FBL unit. It is recommended that you fully understand these parameters before adjusting them. However, it is essential to set geometry. Other parameters, however, depend on the preferences of the pilot.

8en.png


Geometry 6° (tuning)
For proper operation of the Spirit unit, it is necessary to set this parameter correctly. Here, the unit is switched to a special mode for settings 6° of cyclic pitch on the main blades. It is necessary to set the value so that the blades angle is at 6° in the aileron axis. You need to rotate your rotor head with blades to be parallel to the longitudinal axis of the model. A higher value increases the angle; a lower one decreases the angle. Optimal head geometry should be in the range of about 90 – 160. If not in this range, it is recommended to adjust the distance of a ball link on the servo horns or perform other mechanical adjustments.

Collective Direction
Parameter to determine direction of the collective pitch. In case of a Trailing Edge rotor head or if a mixing arms are present on the rotor head, tick the Reversed option. In the most cases the parameter is unticked.

NOTE
Correct configuration is very important, else the collective pitch will be reversed.

Elevator filter
This parameter compensates elevator bouncing during aggressive maneuvers. The larger the value, more compensation is involved. If this value is too high it can lead to a soft feeling in the elevator. We recommend using the default value of 1 to begin with.

Cyclic feed forward
This parameter is used to set amount of direct feel between your sticks and your model helicopter. The higher the value, the more aggressive the model will feel and the faster the model will react to stick movements. If the value is very high, elevator bounce-back effect can occur. During a tic-toc maneuver you can also observe higher motor load or aileron oscillations, because the model is unable to react fast enough. Setting this value too high can result in elevator bounce. If the model feels disconnected and there is a lag between stick inputs and the model, try increasing this value.

Rudder delay
This is a parameter to smooth rudder movements. It also helps to stabilize the rudder – it is a kind of electronic damping. The faster the servo is, the lower the tail delay should be. For analog servos it is recommended to set this value to around 20-25. For usual digital servos it is mostly between 10 – 15. For very fast servos (~0.04s/60°) the value is 5. In case of a brushless servos it is recommended to set a value of 0 - 2. If the value is too high, the rudder could start to oscillate or wag or could cause a slow rudder stop.

Rudder dynamic
If the rudder does not stop correctly, for example it overshoots, this behavior can be changed with this parameter.

6 – is the default value.

The larger the value, the more aggressive the behavior of the tail. If the tail overshoots in stops, the value is too high. This parameter also affects the response speed of the stick movement; a higher value means a faster response. If you cannot reach a symmetric stop on both sides you will need to make sure that the tail is centered at 0°. Alternatively, you can lower the rudder limit for that side.

Rudder – Revomix
Revomix (tail pre-compensation) adds rudder in response to collective pitch changes, when the tail needs increased holding. Revomix is independent of the transmitter. By default it is turned off, the user must set the amount required of the pre-compensation.

Allowed values are 0 to 10 with 0 being disabled; in most cases it is not necessary to use this parameter, however, when using low headspeed or on helicopters with a poor performing tail, this setting can be used.

Pirouette consistency
This parameter determines the consistency of pirouettes and holding performance. If pirouettes are not consistent during certain maneuvers, increase the value of this parameter. This value is individual for every model, it depends on many factors such as: your rudder mechanics, head speed, etc. Before setting this parameter, it is recommended to first set the gyro gains. If the value is too high, the tail can oscillate or wag. It can also cause poor stop performance. This value should be between 150 and 180. For brushless servos it is recommended to increase value by 10-15 points.


EXPERT SETTINGS

For fine tuning you can set the following parameters. Normally it is not needed to configure any of these parameters.

Expen.png


Rotor Rotation Direction
Parameter to determine rotation direction of the main rotor. In the most cases it is in the clock wise direction - parameter is unticked.

Stick deadband
Determines the area, around center stick, where the system does not recognize any stick movement. If channel readings are inprecise the value should be increased. This can be verified in the Diagnostics tab. This parameter does not replace the Exponential function.

Elevator pitchup compensation
If, during fast forward flight, the model reacts to inputs too rapidly or if the model pitches up, increase this value until this no longer occurs. If the helicopter pitches up abruptly, this could be caused by a cyclic range that is too low and/or too much collective pitch. In this case, you will have to increase the Aileron/Elevator range as high as the model can handle without any binding. If this doesn't fix the problem, you can add more pitch-up compensation.

Cyclic phase
The value indicates the angle by which the swashplate is virtually rotated. For example a value of 90 will rotate the elevator to aileron. This feature is recommended for models with multi-blade rotor heads. For most other models, we recommend a zero value.

Pitch Pump Booster
To achieve flybar-like collective pitch behavior, you can increase the value until desired feeling is achieved. Remember that higher values are too demanding for power supply and servos on the model.

Signal processing
This parameter is used for operation on models with extreme vibrations that can't be eliminated in any way. This should be enabled only in cases when is absolutely necessary, because flight performance could be affected. It should increase precision of flight and also the precision of rescue and stabilization modes.

RPM Sensor Filter
In case that your RPM sensor has noisy output then RPM readout can be very unstable. This can lead to various problems with Governor. There may be a problem with spool up, flight mode switching or head speed jittering. To make RPM readout very precise, you may need to increase the value. On the other hand, too high value can lead to a delay, that is unwanted for optimal Governor performance. So the value should be as low as possible while RPM readout is still precise. Variation of 1-20 RPM against the Requested RPM is optimal.

5.9 BACKUP TAB

Here, you can save the settings to your Spirit unit before powering off, you can also save the settings to your computer here, Should you need to reload them at a later date.

9en.png


Profile
This section allows you to Save and Load complete settings of the unit to a specified file. If you have more than one of the same model, it is not necessary to carry out a complete setup again, just load the stored settings easily with the Load button.

Unit
Any changes to the configuration can be saved at any time to the internal flash memory of the unit. To put all settings to a factory defaults, click Factory Settings.

NOTE
Remember to save the settings each time you want to store the settings permanently. You must press the Save button. Otherwise, the changes will be lost after the Spirit FBL unit is turned off.

Bank Switching
In case that the Bank Switching is enabled, you can save the settings from single bank or even all banks. To see the differences between Banks you can use Bank Comparison feature.

5.10 UPDATE TAB

If you want to update the firmware, you can do so in this tab.

10en.png


Firmware
First select the data file containing the firmware (*.4df) – Select button.Once the file is selected, press the Flash button. The upgrade progress will be displayed here. After completion, a confirmation dialog box should indicate a successful update. Then, unplug the unit from its power source. Upon the next start it will load with the newly flashed firmware.

Configuration of the unit is not changed, so you do not need to save/load it.

You can get firmware from: spirit-system.com.


6 BANK SWITCHING

This functionality allows you to switch between saved settings during a flight. Switching is done through the transmitter, so that channel's value is changed. This mean that a Bank can store one unique settings. The unit is able to store 3 different banks.

With a transmitter you are able to use a three position switch to switch freely between banks.

Bank switching is disabled by default, so you can decide whether it is useful in your application. You have to activate it by the assignment of Bank function in the General/Channels window. Generally, it is assigned to channel 7.

Bank 0 – active in range of lower third (impulse under 1400μs).
Bank 1 – active in range of mid third (impulse between 1400μs to 1640μs).
Bank 2 – active in range of upper third (impulse above 1640μs).

Initial settings for Bank 1 and Bank 2 are equal to Bank 0. Bank 0 allow you to configure all parameters, while Bank 1, 2 does not allow to set main parameters. For safety, Bank 1 and 2 does not allow you to set any main parameters.

The Bank switching is great for switching between flight styles, sensor gains for low or high RPMs, for slow acro or 3D. Alternatively it can be used just for tuning your settings.

If the software is connected with the unit then bank switching via the transmitter is disabled. Then, Bank switching is performed using the software in bottom part of the window. When a bank is switched using the software it is necessary to save your settings to the unit before you switch Banks, or your settings will be returned to the previous (unchanged) state.


7 GOVERNOR

From firmware version 1.2 governor feature is available! You can use this feature instead of internal governor from your ESC or other governor. It is designed to work with electric, nitro and gasser helicopters. This can make flight performance even better because of constant head speed.

To achieve proper function it is very important to configure your ESC and then the unit. First from all make sure that internal governor is disabled in the ESC.

It is necessary to disassemble rotor blades from your model prior to the governor setup. Do not make any adjustments with motor turned on.

Governor feature can be used with the following receiver types:
Spektrum DSM2/DSMX, Futaba S-BUS, Jeti EX Bus, SRXL/SUMD.

It is necessary to use throttle output from the unit when using governor. Throttle output is at the AUX port. You must connect the ESC or throttle servo there.

7.1 Sensor Wiring

Signal from a RPM sensor should be connected to the PIT pin (middle pin of the ELE/PIT/AIL port).

  • ESC with RPM output
For electric helicopters the best and the easiest solution. You can use RPM output cable that is present on the ESC.
  • ESC without RPM output
In case that your ESC has no RPM output you will need a separate RPM sensor that can be connected to phases of the motor. Important is to power the sensor properly. Voltage can't exceed allowed level for the sensor. Recommended voltage range can be obtained from the sensor manufacturer. In case that the sensor require 3.3V you can connect it to the satellite connector in the unit (Details in the following photo). You can also use the Spektrum adapter.
In case that the sensor is powered improperly it can be damaged along with the unit.
  • Magnetic sensor
In case that your ESC has no RPM output you will need a separate RPM sensor that can be connected to phases of the motor. Important is to power the sensor properly. Voltage can't exceed allowed level for the sensor. Recommended voltage range can be obtained from the sensor manufacturer. In case that the sensor require 3.3V you can connect it to the satellite connector in the unit (Details in the following photo). You can also use the Spektrum adapter.
In case that the sensor is powered improperly it can be damaged along with the unit.


Gove.png


RPM Sensor connection with optional power from the satellite connector.
Red (+3.3V), Brown (GND).

7.2 Prerequisites

Electric

  1. Set throttle range in your transmitter so that 0% and 100% throttle position matches with value of the throttle bar in the diagnostics tab. This can be done by Subtrim function in your transmitter and/or Travel Adjustment function.
  2. Re-calibrate throttle range according to instructions of your ESC. In the most cases it can be configured by powering the model with throttle stick with 100% throttle and then by moving the stick down to 0%.
  3. If possible, configure fast spoolup mode in the ESC so the governor will be unaffected.

Nitro / Gasser

Set the throttle range in your transmitter so that 0% and 100% throttle position matches with value of the throttle bar in the diagnostic tab. This can be done by Subtrim function in your transmitter and/or Travel Adjust function.

7.3 Activation

To activate Governor feature in the unit, you will need to assign Throttle function in the General tab/Channels. Then you will be able to enter Governor Settings in the General tab.

7.4 Settings

First from all basic settings are necessary so the governor can control the head speed correctly.

Goven.png


Throttle frequency
To achieve the fastest governor reaction it is necessary to set the highest possible frequency. For ESC it could be only 60Hz, but mostly all can work even with 200Hz. If you are unsure, please contact manufacturer of the ESC. For combustion helicopters it is max. operating frequency of the throttle servo.

Throttle Range
This parameter can affect output from the unit so you can fine-tune ranges precisely. For electric helicopters this parameter is optional. But in case that your ESC does not allow to calibrate throttle range correctly, you can do so here. For Nitro and Gasser helicopters you have to configure it always so the Throttle servo range matches range for the motor.

Throttle Range - Min.
Value of the lowest throttle signal. Default value: 1100 μs. For electric helicopters this value should be specified by manufacturer of the ESC. It is often specified in value of miliseconds (ms).

You should set the lowest position when the motor is not spinning up anymore – is halted. While configuring this, the motor can start so you have to be very carefull.

Throttle Range – Max.
Value of the highest throttle signal. Default value: 1900 μs. For electric helicopters this value should be specified by manufacturer of the ESC. It is often specified in value of miliseconds (ms).

The value should be configured to match with 100% throttle output programmed in your ESC or full throttle of the motor. If this parameter is not high enough you will be unable to tune Governor because there will be not enough room to compensate high loads. If configured too high then you can observe that after high load head speed will not drop immediately but can be there even for few seconds. When Min. parameter is changed it is also necessary to update this one.

Throttle Reverse
Especially for Nitro and Gasser motors you can set correct compensation direction for the servo here.

Gear Settings - Sensing Divider
Electric motor: Motor poles / 2. For a 10 pole motor set divider to number 5. Mostly configured to 3 – 5.
Nitro/Gasser motor: Number of all active magnets. Mostly it is 1 – 2.

Gear Settings - Gear Ratio
Gear Ratio of the helicopter between the main wheel and pinion of the motor. For example: 120T main gear / 12T pinion = 10.

Max. Head Speed
Configure max. head speed that should be achieved with 100% throttle curve. For example: If you know that you won't exceed 2500 RPM then you can set the value to 2500. With 80% throttle curve your head speed will be 2000 RPM (2500 * 0.80 = 2000).

Fine-Tuning – Spoolup rate
Configure speed of the motor spoolup. For initial tests we recommend Slow spoolup rate.

Fine-Tuning – Spoolup Rampup
Value that will be added at the beginning of motor spoolup – when Hold is turned off. If the spoolup is not smooth, i.e. motor will start with a kick, the value is too high. If the spoolup has a delay, the value is too low. Default value of 50 μs should work fine in the most cases.

Fine-Tuning - Governor Response
This parameter is the most important one to achieve fast and proper response of the governor. It determine how fast the governor should react to a short-term load. Thus optimal settings are required. If configure too low or too high, rudder will not hold properly and can oscillate. Governor can greatly affect rudder performance so you can achieve better holding behavior. Too high value will result in overspeeding during e.g. pitch pump.

Fine-Tuning - Holding Performance
Determine how well the head speed is maintained during a long-term load. If value is too low then during e.g. tic-toc maneuver head speed can drop gradually. In case it is too high then after the tic-toc head speed can be higher than necessary and can even return to requested RPM with noticeable delay. It is better to start governor tuning process with low value.

7.5 Fine-Tuning Procedure

Firstly you have to finish basic setup including Max. Head Speed. Throttle curve in the transmitter must be FLAT. We recommend to set the throttle curve for example to flat 70%, 80% or 90%.

After disarming Throttle Hold you should immediately see Requested RPM in the software – this is desired head speed that should be maintained. Current RPM is head speed that is currently on the rotor head. If Current RPM is not calculated properly, then there is a problem with Gear Settings. In case that you can see zero or random Current RPM value then there is a problem with RPM Sensor and must be fixed.

Performance tuning procedure
We recommend to set the following values for the beginning:

  • Governor Response: 5
  • Holding Performance: 1
  1. You should start with increasing the Governor Response. You can do so until RPM is constant enough while doing aggressive collective pitch changes during hovering. When you will notice an overspeeding (RPM is higher than initially was) then the value is too high. In case that the value is too low or too high then the rudder performance can be affected negatively as well.
  2. When the Governor Response is well tuned, you can continue with increasing the Holding Performance parameter. In case that the value is too low, you will notice poor holding performance during demanding maneuvers with longer duration such as loop or tic-toc. If the value is too high, you can observe that the head speed is unstable even during stationary hovering.

Governor Response: 6 and Holding Performance: 5 may work fine for wide range of the helicopters.

NOTE

  • Throttle calibration of the ESC is possible only if the Governor is disabled in the unit.
  • For throttle curve under approx. 50% governor is inactive – throttle is controlled directly.
  • You should see “Governor was Engaged” event in the log after spoolup with enabled governor.
  • Governor Bailout function can be activated whenever the throttle signal is higher than 1250 μs which is approx. 12% throttle curve. If the signal is lower then smooth spoolup sequence is activated.
  • In case that the Current RPM value is 4000 RPM measurement is out of range. It may be needed to change count of the active magnets.
  • If governor does not react correctly during Throttle Curve changes or even during spoolup, it is most probably result of an excess noise in the RPM sensor or connection. You may consider to use a proper shielding. Increasing value of the RPM Sensor filter in the Expert settings can solve the problem.
  • List of the supported RPM sensors and their wiring will be updated on the forum.


8 SOFTWARE KEYBOARD CONTROL

For fast and easy configuration we have implemented keyboard controls in the software.

Shortcut Function
F1 to F10 Switch between tabs.
ESC Exit current window.
CTRL + S Save settings to the unit.
CTRL + P Save profile to your computer.
CTRL + L Load profile from your computer to the unit.
CTRL + W Connection settings for the Wifi-Link module.
Numpad 0, 1, 2 Switch between banks.
Tab Switch between parameters.
Space Select parameter / option
Arrows Increase / Decrease value.
Page Up / Page Down Increase / Decrease value by tens.
Home Set the lowest value.
End Set the highest value.